World Health Organization: Pneumococcal conjugate vaccine for childhood immunization - WHO position paper. Weekly Epidemiological Record. 2007, 82: 93-104.
Google Scholar
Lynch JP, Zhanel GG: Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med. 2009, 30: 189-209. 10.1055/s-0029-1202938.
Article
PubMed
Google Scholar
O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, Cherian T: Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009, 374: 893-902. 10.1016/S0140-6736(09)61204-6.
Article
PubMed
Google Scholar
Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, Rudolph K, Parkinson A: Invasive pneumococcal disease caused by nonvaccine serotypes among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 2007, 297: 1784-1792. 10.1001/jama.297.16.1784.
Article
CAS
PubMed
Google Scholar
Flasche S, Van Hoek AJ, Sheasby E, Waight P, Andrews N, Sheppard C, George R, Miller E: Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in England: a cross-sectional study. PLoS Med. 2011, 8: e1001017-10.1371/journal.pmed.1001017.
Article
PubMed Central
PubMed
Google Scholar
Malley R: Antibody and cell-mediated immunity to Streptococcus pneumoniae: implications for vaccine development. J Mol Med. 2010, 88: 135-142. 10.1007/s00109-009-0579-4.
Article
CAS
PubMed
Google Scholar
Malley R, Lipsitch M, Stack A, Saladino R, Fleisher G, Pelton S, Thompson C, Briles D, Anderson P: Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect Immun. 2001, 69: 4870-4873. 10.1128/IAI.69.8.4870-4873.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malley R, Morse SC, Leite LC, Areas AP, Ho PL, Kubrusly FS, Almeida IC, Anderson P: Multiserotype protection of mice against pneumococcal colonization of the nasopharynx and middle ear by killed nonencapsulated cells given intranasally with a nontoxic adjuvant. Infect Immun. 2004, 72: 4290-4292. 10.1128/IAI.72.7.4290-4292.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M: CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci USA. 2005, 102: 4848-4853. 10.1073/pnas.0501254102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, Kolls JK, Srivastava A, Lundgren A, Forte S, et al: Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 2008, 4: e1000159-10.1371/journal.ppat.1000159.
Article
PubMed Central
PubMed
Google Scholar
Hem SL, HogenEsch H: Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines. 2007, 6: 685-698. 10.1586/14760584.6.5.685.
Article
CAS
PubMed
Google Scholar
Berthold I, Pombo ML, Wagner L, Arciniega JL: Immunogenicity in mice of anthrax recombinant protective antigen in the presence of aluminum adjuvants. Vaccine. 2005, 23: 1993-1999. 10.1016/j.vaccine.2004.10.014.
Article
CAS
PubMed
Google Scholar
Romero MI, Shi Y, HogenEsch H, Hem SL: Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine. 2007, 25: 825-833. 10.1016/j.vaccine.2006.09.039.
Article
Google Scholar
Noe SM, Green MA, HogenEsch H, Hem SL: Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine. 2010, 28: 3588-3594. 10.1016/j.vaccine.2010.02.085.
Article
CAS
PubMed
Google Scholar
Jones LS, Peek LJ, Power J, Markham A, Yazzie B, Middaugh CR: Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J Biol Chem. 2005, 280: 13406-13414. 10.1074/jbc.M500687200.
Article
CAS
PubMed
Google Scholar
Peek LJ, Martin TT, Elk NC, Pegram SA, Middaugh CR: Effects of stabilizers on the destabilization of proteins upon adsorption to aluminum salt adjuvants. J Pharm Sci. 2007, 96: 547-557. 10.1002/jps.20762.
Article
CAS
PubMed
Google Scholar
Jiang D, Morefield GL, HogenEsch H, Hem SL: Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid. Vaccine. 2006, 24: 1665-1669. 10.1016/j.vaccine.2005.09.048.
Article
CAS
PubMed
Google Scholar
Hansen B, Sokolovska A, HogenEsch H, Hem SL: Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine. 2007, 25: 6618-6624. 10.1016/j.vaccine.2007.06.049.
Article
CAS
PubMed
Google Scholar
Lu YJ, Leite L, Goncalves VM, Dias WD, Liberman C, Fratelli F, Alderson M, Tate A, Maisonneuve JF, Robertson G, et al: GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine. 2010, 28: 7468-7475. 10.1016/j.vaccine.2010.09.031.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hansen B, Belfast M, Soung G, Song L, Egan PM, Capen R, HogenEsch H, Mancinelli R, Hem SL: Effect of the strength of adsorption of hepatitis B surface antigen to aluminum hydroxide adjuvant on the immune response. Vaccine. 2009, 27: 888-892. 10.1016/j.vaccine.2008.11.078.
Article
CAS
PubMed
Google Scholar
Morefield GL, Sokolovska A, Jiang D, HogenEsch H, Robinson JP, Hem SL: Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005, 23: 1588-1595. 10.1016/j.vaccine.2004.07.050.
Article
CAS
PubMed
Google Scholar
Zhang Z, Clarke TB, Weiser JN: Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest. 2009, 119: 1899-1909.
PubMed Central
CAS
PubMed
Google Scholar
Peck A, Mellins ED: Precarious balance: Th17 cells in host defense. Infect Immun. 2010, 78: 32-38. 10.1128/IAI.00929-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin Y, Slight SR, Khader SA: Th17 cytokines and vaccine-induced immunity. Semin Immunopathol. 2010, 32: 79-90. 10.1007/s00281-009-0191-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, et al: Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem. 1999, 274: 33419-33425. 10.1074/jbc.274.47.33419.
Article
CAS
PubMed
Google Scholar
Michelsen KS, Aicher A, Mohaupt M, Hartung T, Dimmeler S, Kirschning CJ, Schumann RR: The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCS). Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2. J Biol Chem. 2001, 276: 25680-25686. 10.1074/jbc.M011615200.
Article
CAS
PubMed
Google Scholar
Denoel P, Poolman J, Carletti G, Veitch K: Effects of adsorption of acellular pertussis antigens onto different aluminium salts on the protective activity in an intranasal murine model of Bordetella pertussis infection. Vaccine. 2002, 20: 2551-2555. 10.1016/S0264-410X(02)00158-5.
Article
CAS
PubMed
Google Scholar
Andreasen C, Powell DA, Carbonetti NH: Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PLoS One. 2009, 4: e7079-10.1371/journal.pone.0007079.
Article
PubMed Central
PubMed
Google Scholar
Higgins SC, Jarnicki AG, Lavelle EC, Mills KH: TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol. 2006, 177: 7980-7989.
Article
CAS
PubMed
Google Scholar
Banus S, Stenger RM, Gremmer ER, Dormans JA, Mooi FR, Kimman TG, Vandebriel RJ: The role of Toll-like receptor-4 in pertussis vaccine-induced immunity. BMC Immunol. 2008, 9: 21-10.1186/1471-2172-9-21.
Article
PubMed Central
PubMed
Google Scholar
Hem SL, HogenEsch H, Middaugh CR, Volkin DB: Preformulation studies--The next advance in aluminum adjuvant-containing vaccines. Vaccine. 2010, 28: 4868-4870. 10.1016/j.vaccine.2010.05.007.
Article
CAS
PubMed
Google Scholar
Clapp T, Siebert P, Chen D, Jones BL: Vaccines with aluminum-containing adjuvants: Optimizing vaccine efficacy and thermal stability. J Pharm Sci. 2011, 100: 388-401. 10.1002/jps.22284.
Article
PubMed Central
CAS
PubMed
Google Scholar